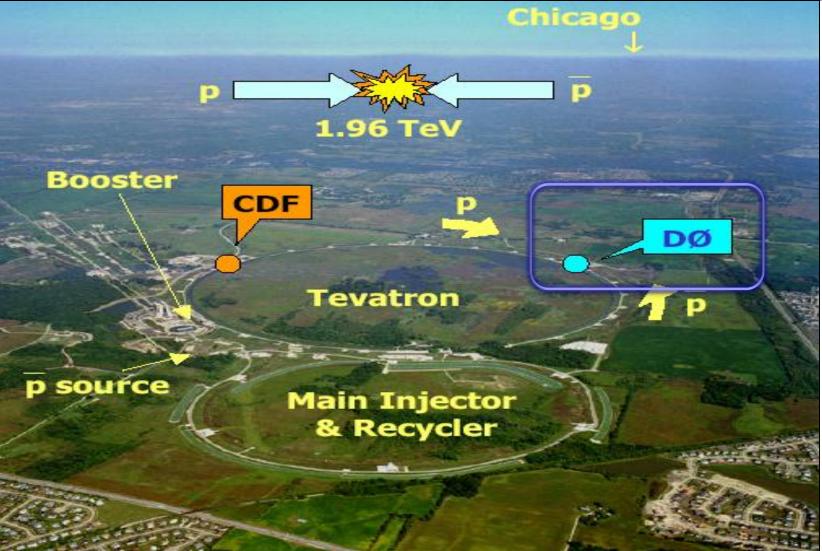
B spectroscopy at the Dzero experiment

Eduard De La Cruz Burelo

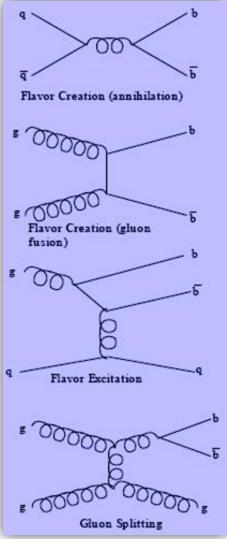
CINVESTAV IPN Mexico On behalf of the D0 collaboration MENU 2010, Williamsburg VA

<u>Outline:</u>

- > DØ detector
- > B Physics @ Tevatron
- **B**_c mass measurement
- Excited Bs mesons
- $\succ \Xi_{\rm b}$ and $\Omega_{\rm b}$ observations
- > Summary

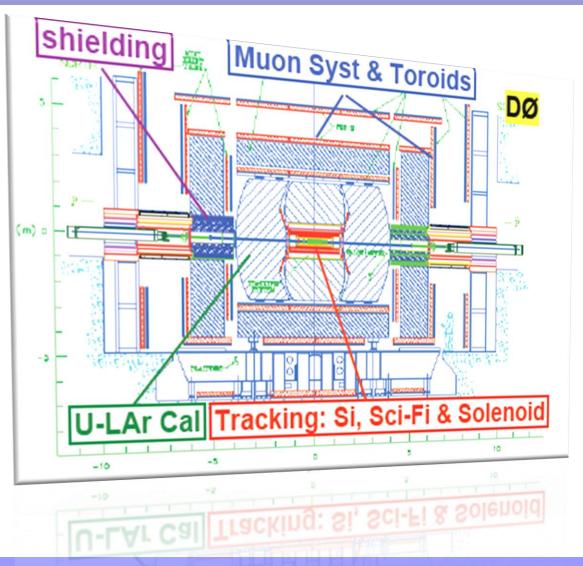

June 2, 2010

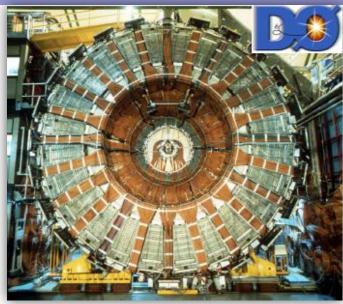
MENU 2010


D0 experiment at the Tevatron

MENU 2010

- Tevatron is an excellent place for flavor physics:
 - ✓ b production cross section is x1000 than e⁺ e⁻ B factories
 - ✓ All *b* and *c* hadron species are produced:
 - $B^+, B^0, B_s, B_c, \Lambda^0_b, \Xi_b, \Omega_b, ...$
 - $D^+, D^0, D_s, \Lambda_c, \chi_c, \Xi_c$, X(3872), etc.
- However:
 - Inelastic (QCD) background is x1000 higher than the b cross section.
 - Needs smart selection starting from triggers

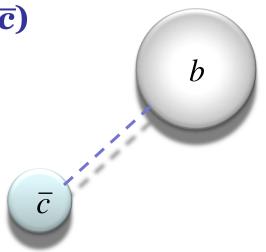

B spectroscopy status


- Mesons:
 - B⁺, B⁰, B_s, B_c⁺ (established)
 - B* (established),
 - B**(CDF & DØ)
 - B_s** (CDF & DØ)
- Baryons
 - Λ_{b} (established)
 - Σ_{b}^{+} , and Σ_{b}^{*+} (CDF)
 - $\Xi_{\mathbf{b}}^{-}$, $\Omega_{\mathbf{b}}^{-}$ (DØ &CDF)

DØ detector

Important:

- Triggering
- Muons
- Tracking/vertexing



B_c meson

Bound state of two heavy quarks: ($b\bar{c}$)

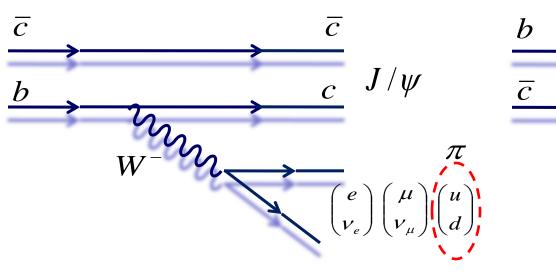
- Good lab for potential models
- B_c is the only meson with two heavy flavors
- Only weak decays possible

Experimental status:

- Discovered in Run I of the Tevatron in semileptonic decays
- With higher statistics in Run II of the Tevatron:
 - ✓ More precise lifetime measurement (D0 & CDF)
 - ✓ Observation on fully reconstructed decays: mass measurement

Challenge:

- B⁺:B⁰:B_s:b baryons \approx 40:38:10:10, B_c~0.5%
- c-like lifetime observed : $\tau \sim 0.45 \text{ ps}$

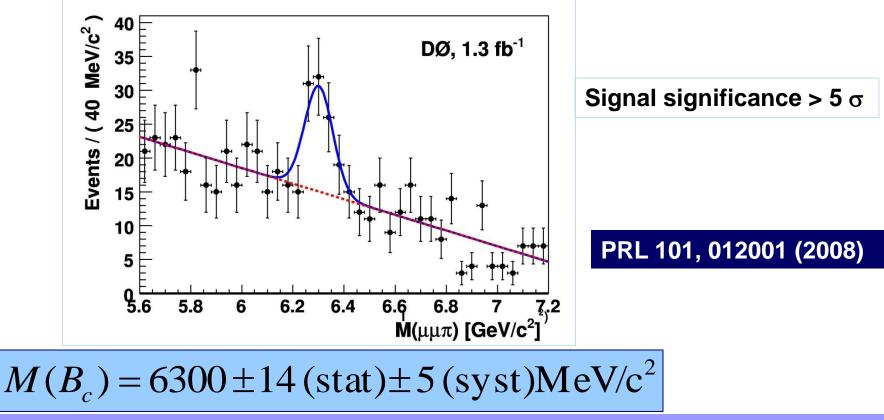


 B_{s}

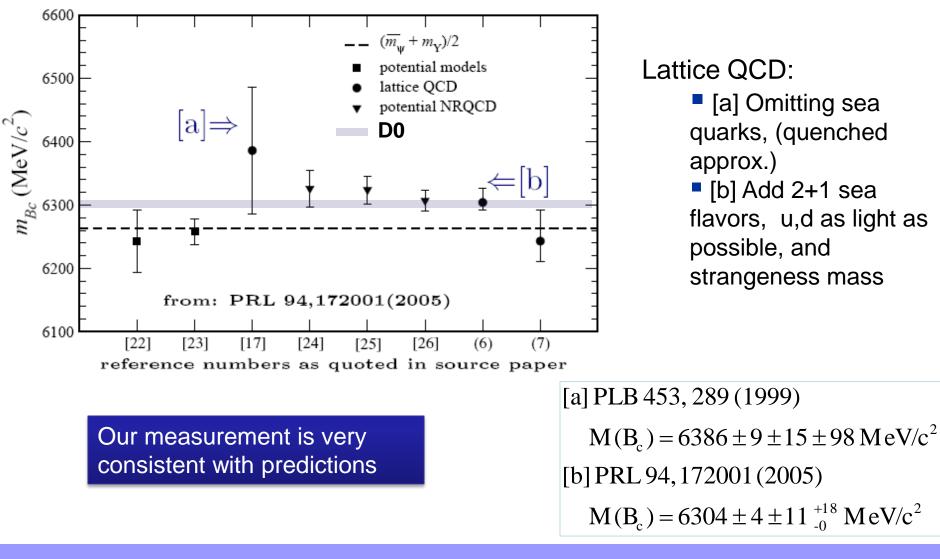
e v $\begin{pmatrix} \mu \\ \nu_u \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix}$

B_c meson decays

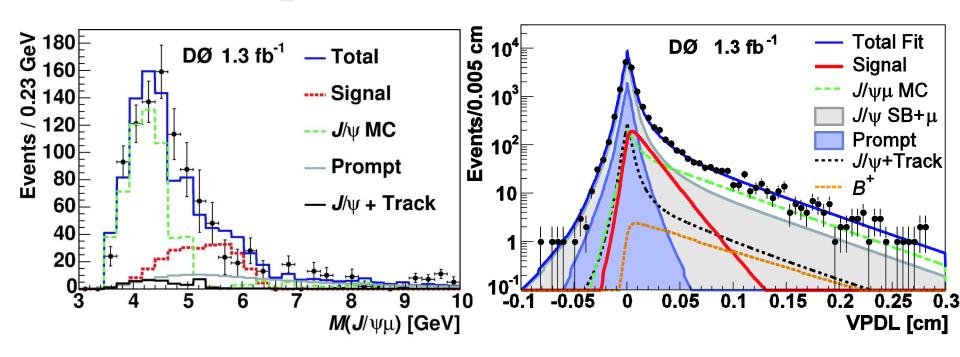
b as spectator (not yet observed)


- A J/ ψ in the final state has huge advantage for triggering
- Semileptonic decays are not fully reconstructed
 - Mass extracted with large uncertainty
 - ✓ Higher statistics favors lifetime measurements

B_c mass measurement at D0


- ✓ Exclusive reconstruction in $B_c^+ \rightarrow J/\psi \pi^+$
- ✓ Optimization in B+→J/ ψ K+ and B_c⁺→J/ ψ \pi⁺ Monte Carlo
- ✓ Data of 1.3 fb⁻¹integrated luminosity

B_c mass predictions



MENU 2010

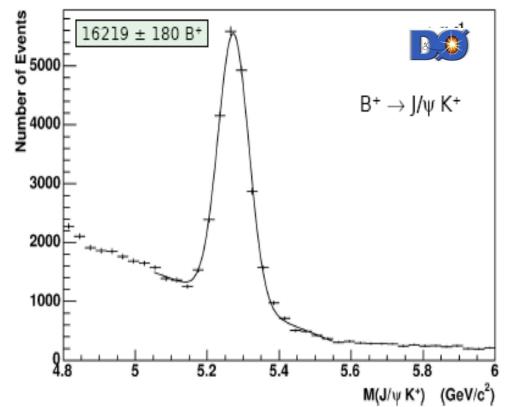
B_c meson lifetime

In addition we have measured the B_c lifetime in semileptonic decays to be:

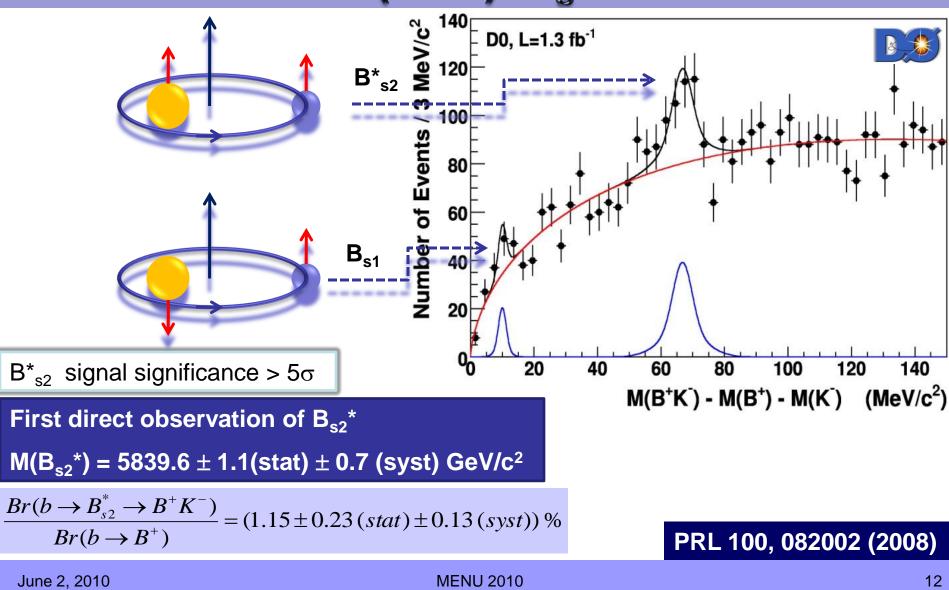
$$\tau(B_c) = 0.448^{+0.038}_{-0.036} \text{ (stat)} \pm 0.032 \text{ (syst)} \text{ps}$$

PRL 102, 092001 (2009)

Excited (L=1) B_s mesons



Search for narrow B_s^{**} mesons


- Idea:
 - $\checkmark B_s^{**} \rightarrow B^{(*)+} K^-,$
 - ✓ $B^{*+} \rightarrow B^+ \gamma$ (γ undetected)
 - ✓ $B^+ \rightarrow J/\psi K^+$
 - ✓ Due to the undetected γ , we expect a Shift of possible B_{s2}^{*} , B_{s1} peaks by $\Delta M(B^{*+} - B^{+}) =$ 45.78 MeV/c² (see PDG)

Excited (L=1) B_s mesons

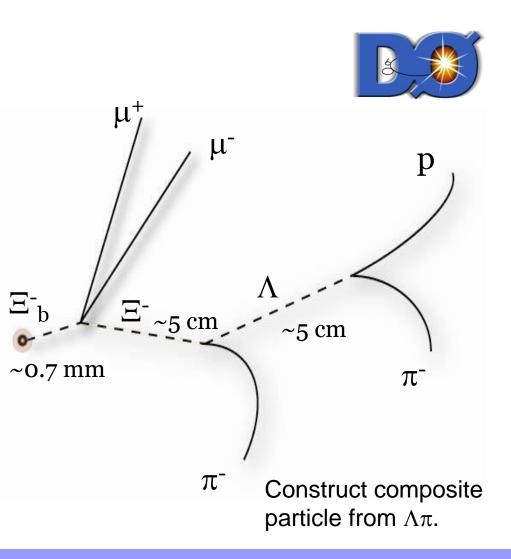
When Tevatron Run II begun:

Notation	Quark content	JP	SU(3)	(I,I ₃)	S	Mass
Λ_b^{0}	b[ud]	1/2+	3*	(0,0)	0	5619.7±1.2±1.2 MeV
Ξb	b[su]	1/2+	3*	(1/2,1/2)	-1	5.80 GeV
	b[sd]	1/2+	3*	(1/2,-1/2)	-1	5.80 GeV
${\Sigma_{b}}^+$	buu	1/2+	6	(1,1)	0	5.82 GeV
Σ_b^{0}	b{ud}	1/2+	6	(1,0)	0	5.82 GeV
Σ_{b}^{-}	bdd	1/2+	6	(1,-1)	0	5.82 GeV
Ξ _b ⁰ ,	b{su}	1/2+	6	(1/2,1/2)	-1	5.94 GeV
Ξ _b -'	b{sd}	1/2+	6	(1/2,-1/2)	-1	5.94 GeV
Ω_{b}^{-}	bss	1/2+	6	(0,0)	-2	6.04 GeV
${\Sigma_{b}}^{*+}$	buu	3/2+	6	(1,1)	0	5.84 GeV
${\Sigma_{b}}^{*0}$	bud	3/2+	6	(1,0)	0	5.84 GeV
Σ_{b}^{*-}	bdd	3/2+	6	(1,-1)	0	5.84 GeV
±_b*0	bus	3/2+	6	(1/2,1/2)	-1	5.94 GeV
Ξ_b*-	bds	3/2+	6	(1/2,-1/2)	-1	5.94 GeV
Ω_{b}^{*}	bss	3/2+	6	(0,0)	-2	6.06 GeV

from hep-ph/9406359

During Tevatron Run II

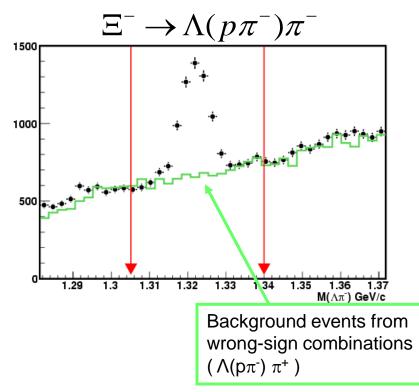
Notation	Quark content	JP	SU(3)	(I,I ₃)	S	Mass
Λ_b^{0}	b[ud]	1/2+	3*	(0,0)	0	5620.2 \pm 1.6 MeV
Ξ _b ⁰	b[su]	1/2+	3*	(1/2,1/2)	-1	5.80 GeV
Ξ _b -	b[sd]	1/2+	3*	(1/2,-1/2)	-1	5792.4 \pm 3.0 MeV
Σ_{b}^{+}	buu	1/2+	6	(1,1)	0	$5807.8\pm2.7~\text{MeV}$
Σ_b^{0}	b{ud}	1/2+	6	(1,0)	0	5.82 GeV
Σ _b ¯	bdd	1/2+	6	(1,-1)	0	$5815.2\pm2.0~\text{MeV}$
Ξ _b ⁰ ,	b{su}	1/2+	6	(1/2,1/2)	-1	5.94 GeV
Ξ _b -'	b{sd}	1/2+	6	(1/2,-1/2)	-1	5.94 GeV
Ω_{b}^{-}	bss	1/2+	6	(0,0)	-2	6.04 GeV
${\Sigma_{b}}^{*+}$	buu	3/2+	6	(1,1)	0	$5829.0\pm3.4~\text{MeV}$
Σ_{b}^{*0}	bud	3/2+	6	(1,0)	0	5.84 GeV
Σ _b *-	bdd	3/2+	6	(1,-1)	0	5836.4 \pm 2.8 MeV
Ξ _b *0	bus	3/2+	6	(1/2,1/2)	-1	5.94 GeV
Ξ _b *-	bds	3/2+	6	(1/2,-1/2)	-1	5.94 GeV
${\Omega_{b}}^{\star\text{-}}$	bss	3/2+	6	(0,0)	-2	6.06 GeV



Search for $\Xi_{b}^{-} \rightarrow J/\psi \Xi \rightarrow (\mu + \mu -)\Lambda \pi$ -

Reconstruction procedure:

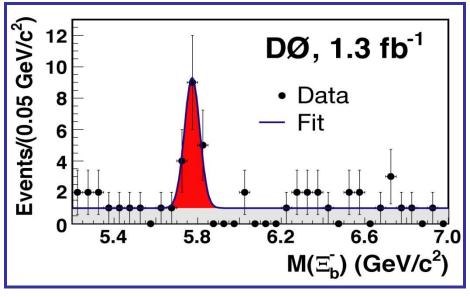
- ✓ Reconstruct $J/\psi \rightarrow \mu^+\mu^-$
- ✓ Reconstruct $\Lambda \rightarrow p\pi$
- ✓ Reconstruct $\Xi \rightarrow \Lambda + \pi$
- ✓ Combine J/ ψ + Ξ
- Improve mass resolution by using an event-by-event mass difference correction
- ✓ The optimization:
 - $\checkmark \quad \Lambda_b \rightarrow J/\psi \Lambda \text{ decays in data}$
 - \checkmark J/ψ + Ξ(fake from Λ(pπ⁻)π⁺)
 - ✓ Monte Carlo simulation of $\Xi_{b}^{-} \rightarrow J/\psi + \Xi^{-}$


E_b⁻ Search optimization

Final $\Xi_{\rm b}$ selection cuts:

- Λ→pπ decays:
 - p_T(p)>0.7 GeV
 - p_T(π)>0.3 GeV
- $\Xi^- \rightarrow \Lambda \pi$ decays:
 - $p_T(\pi) > 0.2 \text{ GeV}$
 - Transverse decay length>0.5 cm
 - Collinearity>0.99
- Ξ_b particle:
 - Lifetime significance>2.
 (Lifetime divided by its error)

Based on:


- $\Lambda_b \rightarrow J/\psi \Lambda$ decays in data
- J/ ψ + Ξ (fake from $\Lambda(p\pi$ -) π +)

Ξ_{b} observation (DØ)

• Fit:

- Unbinned extended log-likelihood fit
- Gaussian signal, flat background
- Number of background/signal events are floating parameters

Number of events: 15.2 ± 4.4

Mass: 5.774 ± 0.011(stat) GeV

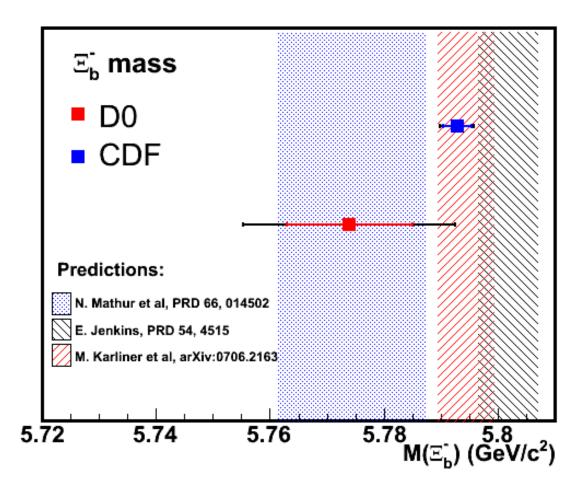
Width: 0.037 ± 0.008 GeV

Signal significance > 5 σ

We also measured:

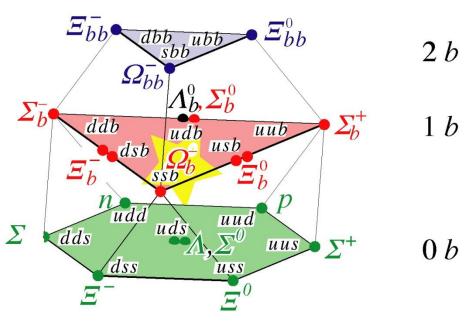
$$R = \frac{\sigma(\Xi_b^-)BR(\Xi_b^- \to J/\psi \Xi^-)}{\sigma(\Lambda_b)BR(\Lambda_b \to J/\psi \Lambda)}$$

 $R = 0.28 \pm 0.09 \,(\text{stat})^{+0.09}_{-0.08} \,(\text{syst})$


PRL 99, 052001 (2007)

 $M(\Xi_b^-) = 5.774 \pm 0.011 (\text{stat}) \pm 0.015 (\text{syst})$

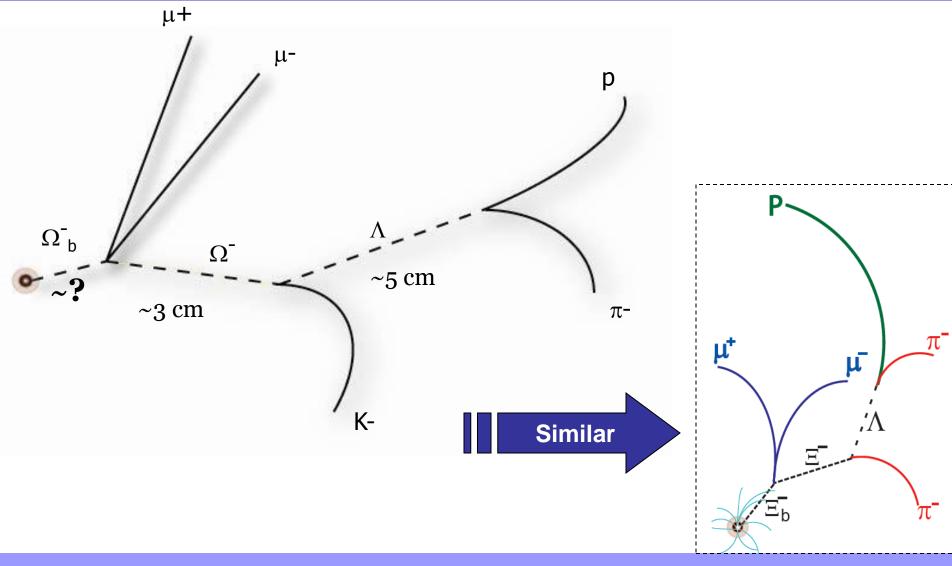
Comparison: Experiment/Theory


DØ PRL 99, 052001 (2007) CDF PRL 99, 052002 (2007)

Search for the $\Omega_{b}^{-}(bss)$

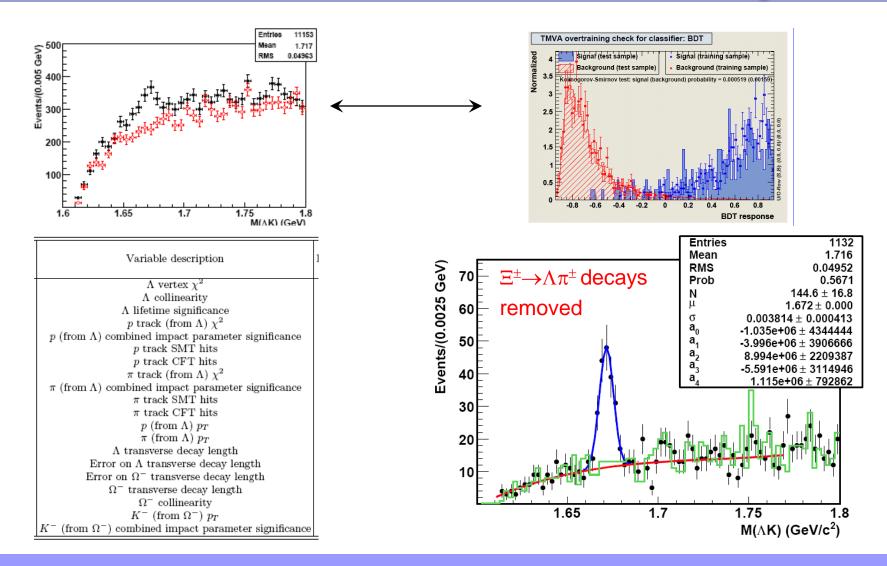
 $J = 1/2 \ b \text{ Baryons}$ 3 b

- \succ bss quarks combination
- Mass is predicted to be 5.94 - 6.12 GeV


$$\succ \mathsf{M}(\Omega_b) > \mathsf{M}(\Lambda_b)$$

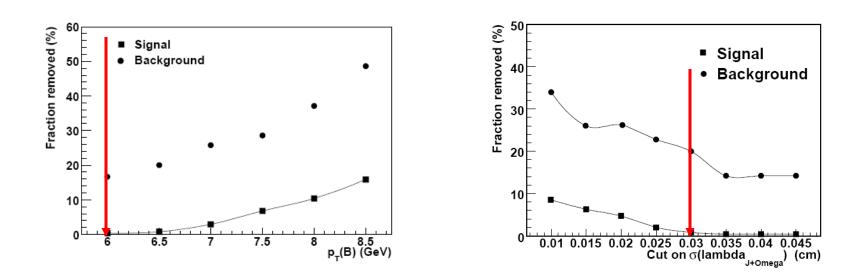
Lifetime is predicted to be 0.83<τ(Ω_b)<1.67 ps</p>

How do we look for it?

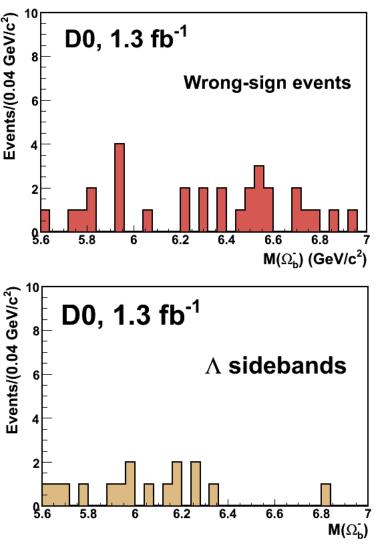

Analysis strategy

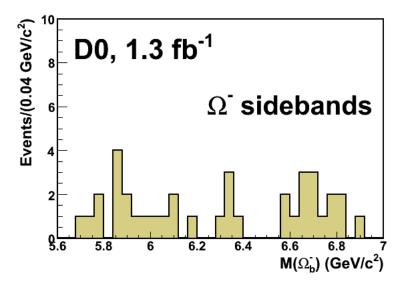
Select J/ψ candidates	Events are reprocessed to increase reconstruction efficiency of long-lived particles.
Select $\Lambda \rightarrow p\pi$	Yield is optimized by using proper decay length significance cuts.
• Reconstruction of $\Omega \rightarrow \Lambda + K$	Optimize yield by using multivariate techniques
Combine J/ψ + (ΛK ⁺)	Keep blinded $J/\psi + \Omega$ combinations and optimize on $J/\psi + (\Lambda K^+)$
Event per event mass correction	Improve mass resolution from 80 MeV to 34 MeV
Fix selection criteria and then apply them to J/ψ + Ω	Perform as many test as possible in different background samples

BDT to select $\Omega^{-} \rightarrow \Lambda K$ decays


MENU 2010

Final optimization

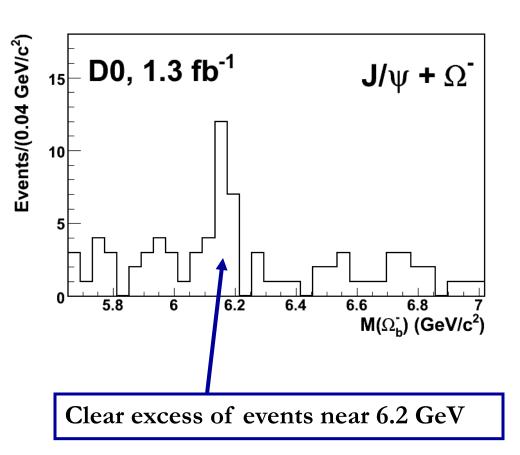

• We compare MC signal vs wrong-sign background events.



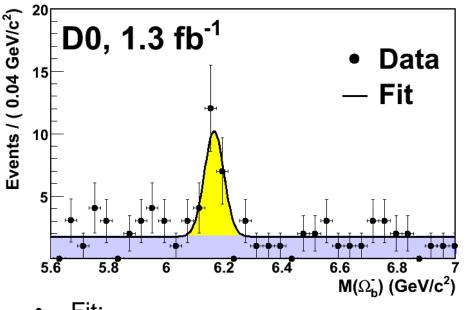
Nothing where nothing should be

We check also high statistics MC samples

 $\Lambda_{b} \rightarrow J/\psi \Lambda \rightarrow (\mu^{+}\mu^{-})(p\pi^{-})$ $B^{-} \rightarrow J/\psi K^{*-} \rightarrow (\mu^{+}\mu^{-})(K_{s}^{0}\pi^{-}) \rightarrow (\mu^{+}\mu^{-})((\pi^{+}\pi^{-})\pi^{-})$ $\Xi_{b}^{-} \rightarrow J/\psi \Xi^{-} \rightarrow (\mu^{+}\mu^{-})(\Lambda\pi^{-}) \rightarrow (\mu^{+}\mu^{-})((p\pi^{-})\pi^{-})$


No excess is observed in any control samples after selection criteria is applied to them.

Looking at right-sign combinations


- After optimization:
 > σ_λ<0.03 cm
 > J/ψ and Ω in the same hemisphere
 > p_T(J/ψ+Ω)>6 GeV
- Mass window for the search: 5.6 7 GeV

Ω_{b} mass measurement

- Fit:
- Unbinned extended log-likelihood fit
- Gaussian signal, flat background
- Number of background/signal events are floating parameters

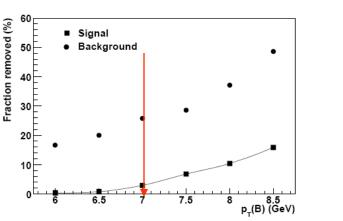
 $N= 17.8 \pm 4.9 \text{ (stat)} \pm 0.8 \text{ (syst)}$

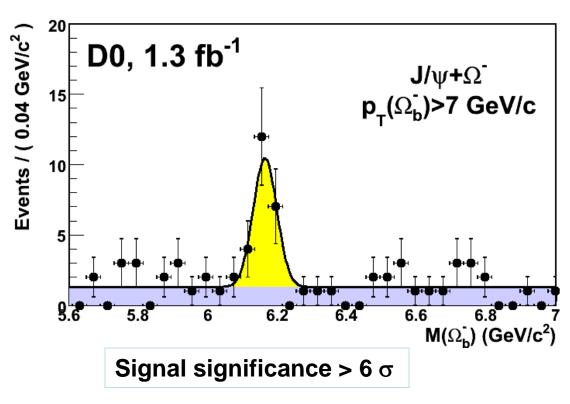
Mass: $6.165 \pm 0.010(stat) \pm 0.013(syst)$ GeV

Width fixed (MC): 0.034 GeV

Signal significance > 5 σ

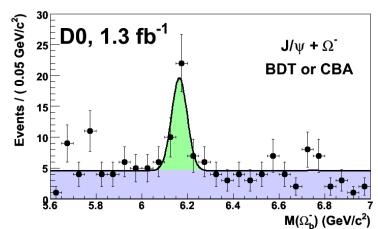
$$R = \frac{f(b \to \Omega_b^-)Br(\Omega_b^- \to J/\psi \ \Omega^-)}{f(b \to \Xi_b^-)Br(\Xi_b^- \to J/\psi \ \Xi^-)}$$
$$R = 0.80 \pm 0.32(stat)_{-0.22}^{+0.14}(syst)$$


PRL 101, 232002 (2008)


$M(\Omega_b^-) = 6.165 \pm 0.010(\text{stat}) \pm 0.013(\text{syst}) \text{ GeV}$

Consistency check: Increase p_T(B)

MENU 2010


Cut Based Analysis (CBA)

Variable	BDT	СВА
p _T (π) (GeV)	>0.2 and input to BDT	>0.2
p _T (p) (GeV)	>0.2 and input to BDT	>0.7
p _T (K) (GeV)	input to BDT	>0.3
Ω^{-} collinearity	input to BDT	>0.99
Ω^{-} transverse decay length (cm)	input to BDT	>0.5
Proper decay length uncertainty (cm)	<0.3	<0.3

Number of signal events: 15.7 ± 5.3

Mean : 6.177 \pm 0.015(stat) GeV Width fixed (MC): 0.034 GeV Signal significance ~4 σ

 ➢ After remove duplicate events, we observe 25.5 ± 6.5 events.
 ➢ Significance > 5σ

Summary

Many unique results coming from D0:

- Direct observation of B_{s1} and B_{s2}^*
- Precise measurement of the $\rm B_{c}$ mass and lifetime.
- First observation of Ξ_{b}^{-} and Ω_{b}^{-} baryons
- Not shown here many more results ...

http://www-d0.fnal.gov/Run2Physics/WWW/results/b.htm